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Synopsis
We investigate the general properties of the most general local, angular momentum depend­

ent nucleon-nucleon potential. We generalise the arguments of a previous paper on angular 
momentum dependent potentials, to take into account the complications which arise because 
of the spin of the nucleons. As an example we consider a scalar boson exchange potential, and 
show that the conventional approximation methods for obtaining local potentials from field 
theory are completely misleading in this case.

PRINTED IN DENMARK
BIANCO LUNOS BOGTRYKKERI A/S



1. Introduction

In a previous paper1) (referred to as I hereafter) we have discussed the 
concept of a local, angular momentum dependent potential, and its relevance 
to the equivalence problem, that is, the problem of obtaining a local potential 
which is equivalent to a given non-local potential as far as phase shifts are 
concerned. We established in I that it is in principle possible to construct a 
local angular momentum dependent potential which is equivalent to a given 
non-local one. The question whether a potential is non-local or local in 
coordinate space depends on the off shell behaviour of the potential in mo­
mentum space. In I it was explicitly shown that in perturbation theory it 
is always possible to choose the oil' shell continuation of the potential so that 
the resulting coordinate space potential becomes local and angular momen­
tum dependent, since this merely corresponds to a rearrangement of the 
(infinite number of) equations connecting the potentials V2n to the T-ma- 
trices T2n of various orders. In a practical calculation, when the potential 
is constructed only up to some finite (and small) order, the off shell con­
tinuation chosen for the potential will affect the resulting phase shifts. On 
the basis of numerical calculations performed in I for a single particle ex­
change potential, we may assert that the phase shift obtained with a poten­
tial which is chosen to be local and angular momentum dependent does not 
differ very much from a phase shift obtained with a potential which differs 
slightly off the energy shell from the first potential. From the practical point 
of view, we may therefore consider the method of constructing a local, 
angular momentum dependent potential as a method by which a given 
non-local potential can be approximated by a local one. An approximation 
of this kind can in general be expected to be superior to the “static” and 
“adiabatic” approximations which have hitherto been used.

The purpose of the present paper is to generalise the arguments given 
in I for interactions between spinless scalar particles to the case of interac­
tions between nucleons in which various complications occur due to the 
spin of the nucleons. However, in this paper we restrict the detailed discus-
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sion to only those points which cannot immediately be inferred from the 
discussion given in I.

Section 2 contains a discussion of the general form of a potential. In 
section 3 we evaluate the “spin-angle”-matrix elements of the potential in 
the momentum representation, which are needed in order to obtain the 
partial wave integral equations which connect the angular momentum 
dependent coordinate space potentials to the potential in momentum rep­
resentation.

In section 4 we solve these integral equations, and examine briefly 
some of the properties of the resulting coordinate space potentials.

Section 5 contains a discussion of the scalar boson exchange potential 
which we use as an illustration, and in section 6 we give some concluding 
remarks.

2. The general form of the potential

As is shown in an article by J. Goto and S. Machida2), the most general 
form of a potential between two spin one half nucleons, which fulfils natural 
invariance requirements, i. e. invariance with respect to coordinate space 
translation, Galilei transformation, the exchange of the two nucleons, rota­
tion of space coordinates, space reflections, time reversal and Hermiticity 
of the potential, is, in momentum space,

V^,^,?,/») = Vo+Vii(ç x/>)•$ ++V3ct1-ct2 |
+ T4ct1-(^ x/>)cr2-(g x/») +V5CT1-pct2-/>. |

The quantities q and p are given, in terms of the centre of mass (c.m.) 
momenta (Fig. 1), by

q = k - k', p = ±(k + k'). (2.2)

The six functions Vt in (2.1) are real functions of the three independent 
scalars that can be formed from q and p,

V,-  V,(q\p\(q x PŸ). (2.3)

Finally, cq and cr2 in (2.1) denote the spin operators for the two nucleons, 
and 5 = 1 /2(cr1 + cr2).

When charge independence is assumed, then each function \\ can be 
expressed as a sum of a 1-term and Tj/i^-term in iso-space, where the t are 
the iso-spin operators. In what follows we shall omit the iso-spin factors, 
which are unessential in the discussion.
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When (2.1) is transformed to coordinate space, one obtains in general 
a completely non-local potential.

However, in certain circumstances the resulting coordinate space poten­
tial becomes neither strictly local nor non-local, but becomes a function of 
r and Z,2, where L is the angular momentum operator. The problem of 
determining the form of such a potential in the two-nucleon case has been 
considered by S. Okubo and R. E. Marshak3*.  Their result, which is essen­
tially based on invariance arguments, is

^(°’l»<T2’r’^'2) = ^0 + + i[^2’^121 + + ^3CT1 ' CT2 + ^4^12’ (2-4)

where
•$12 = • ra2 • r • ct2, (2.5)

L12 = 3ax • £cr2 • L - • a2£2. (2-6)

The five functions Gt in (2.4) are functions of r and £2 only. Actually (2.4) 
differs slightly from the expression given by Okubo and Marshak, as we 
have symmetrised the tensor force term, and, for reasons of convenience, 
changed the definition of the quadratic spin orbit operator L12.

As pointed out by Okubo and Marshak, a potential of the form (2.4) 
is the most general local potential which can be obtained as a solution to 
the inverse problem of scattering.
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Let us now suppose that the function V in (2.1) is properly restricted 
so that it has a coordinate space representation of the form (2.4). If this is 
the case, then we have the relation between U and G

= <Æ'| G(a1,o’2,r,£2)| fe> (2-7)
where

<k' I G(ct1, cr2, r,L2) | fe> = f d3re~ik’ rG(ol,o2,r,L2)eik r. (2.8)

If the relation (2.7) holds between V and G, then it holds separately for the 
spin-independent, spin-linear and spin-bilinear parts of V and G respectively. 
We thus obtain from (2.7),

Vo = <Ä'|G0|Ä> (2.9)

\\i(q x p)-S = (k'\G1L-S\k) (2.10)

2 = I + ^3CT1 ’ °2 + ^4^12} I (2’1 1)
i - 2

where we have denoted by -0,- (z = 2,. . .,5) the four spin-bilinear expres­
sions in (2.1).

In the first place it is clear that the relations (2.9)—(2.11) are well defined 
only if the functions Gf(r,£2) satisfy certain conditions. In I we have an­
alysed these conditions in detail for the case of a spin independent potential, 
which corresponds to eq. (2.9). We may summarize these conditions as 
follows. We require that each function Gi(r,L(L + 1)) for fixed r > 0 is 
an entire function of L(L + 1), which is bounded by a finite power of L(L + 1) 
for non-negative integral values of L. Then we require the existence of the 
integrals

00

J *r 2|G,(r,L(/.+ 1))| (2.12)
0

for every fixed L. In addition to (2.12) we have also to require the existence 
of additional absolute moments of each function Gt(r,L(L + 1)), but on this 
point we refer to I for details.

Our next concern will be to invert the equations (2.9)—(2.11), that is, 
express the functions Gt as integral transforms of the functions V). At this 
point it is convenient to take the partial wave projection of the equations 
(2.9)-(2.11 ).
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We define the partial wave projection or “spin-angle” matrix element 
of a given function V(a1,a2,ç,/») as follows:

Vw - <X\V\L') - J (2.13)

where
- 2 CLS(J,M-,mL,ms)YL^(Q)7~- (2.14)

'inr,ms

in standard notation.

3. Matrix elements

The matrix elements of the six potential terms in (2.1) have been eval­
uated by Goto and Machida (Ref. (2)), but for completeness these matrix 
elements are also included in this paper in a more compact notation. The 
matrix elements we have calculated coincide with those given by Goto and 
Machida, except in the cases of the linear and quadratic spin orbit potential, 
where there is a discrepancy. We also calculate the matrix elements of the 
live terms in <&'|G|fe>. The evaluation of the matrix elements defined 
by eq. (2.13) is in principle quite straightforward, although much tedious 
Clebsch-Gordon algebra is required in the calculation. To simplify the no­
tation we introduce the following abbreviations:

+1
4«m> _ A«»’(Å-,i') - (1 + 3<,r1 f </.r.r”‘PL(.r)Vi I

Jl (3-1)

A‘L(k,k') - A«“>(fc,C),
and

_ i 00
Giik.k') - C>^3(kk'p I ärrG^MI. + 1))J (A-r)./ (k'r) (3.2)

J L £ L 4-
0

Here Jv(z) is the Bessel function of the first kind, PL(x) is the Legendre poly­
nominal and x is the cosine of the angle between k and k'. Instead of e.g. 
(L',k'\G0\k,Ly we write <L'|G0|L> to simplify the notation. Because of 
the symmetry, invariance and Hermiticity requirements which we as­
sume the potential to satisfy there will be five independent matrix elements; 
namely one for S = 0, where we have L' = L = J, and for S = 1 three 
matrix elements between states of equal L, where L takes the values J — 1, J 
and J + 1 respectively, and one non-diagonal element with L' = J-l, 
L = J + 1.
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For the spin-independent and spin-linear potential we readily obtain

Z. - Fl(k,k") - At (3.3)

<Z.'|G0|L> - ôLL.G°L(k,k'), (3.4)
and

<L'|Vii(çx/>)-S|L> =
+ 1) - L(L + 1) ~ S(S + l)]ôLL,27rFà(Â-,7/),

M(,,d - M f ' )■ I
^L'\GlL-S\L> = ôLL,k[J(J + 1) - L(L + 1) - S(S + i)]G lL(k,k'). (3.6)

The evaluation of the matrix elements of the bilinear terms requires an 
appreciable amount of calculation, the result of which can be expressed as 
follows. The four matrix elements between states of equal L of any of the 
functions = 2,. . .,5) can be written as

<L|V,P,|L> - 27IZl<SF'(i,4')<^-^> + 2^Zl,eT,(A:,e)<S12>.
where

<oy • a2> = 2S(S + 1 ) - 3,
and

0, for S = o,
2(J-1)
2J + 1 ’

for S = 1, L = 7-1

2, for s = 1, L = 7,

2(7 4-2)
2J + 1 ’

for s = 1, L = 7+1

We obtain
F2L{SP\k,k') = l[(k2 + k'2)A2L - 2M'A|(1)], 

(3.7)

(3.8)

(3.9)

(3.10)

F^)(Å-,Å-') = (k2 + F'2)A2 - 2kk'A2Lw + 3Å-Å-' (3.11)

F^SP\k,k') = A2, (3.12)

F2(QT)(A,F) = 0, (3.13)

F^SP\k,k') = ik2k'2[Ai-Al^], (3.14)
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and

F^QT\k,k') = %k2k'2

F^SP\k,k') = %[(k2 + k,2)A5L+2kk'A^],

Fl^Xk.k') = I (k2 + å-,2)A1 + 2kk'A5Lw -

The non-diagonal element can be written as

<J +11 vAl J -1> -

where
FF>(4,*')  - Ki2A2_1 + r2A2+1-2M'A2),

F|m(i,i') - 0,

F»T\k.k") - $* 2*' S![2A1<1>-A^1-Ai+1]>

Fj'T>(A-,A-') = 5 [i'2A5t_i + PA‘+I + 2M-'A1J.
Hence, if

V - 2 VA.
, i = 2 then

<7,|V|L> = 2nF(LSP\k,k'}<Oi ■ a2> + 2tiF^T) (£,&') <S12>, 
and .

<j+i|V|j-i> = 2J + 1

where

f£sp>(*, a-') - 2 f£I5P>(å-,å-'),
i = 2

FÿT>(k,k‘) - 2 F£«T'(t,*'),
i = 2

and

F£T>(Jt,*')  - 2
i = 2

For the matrix elements of the bilinear terms in G we obtain

(3.15)

(3.16)

(3-17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3-24)

(3.25)

(3.26)

(3.27)

and
<L||[G2,S12]+|L> - G2(*A)<S 12>, (3.28)
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(3.29)

(3.30)
o

(3.31)

(3.33)

We observe the

-2<L12> = (2L (3.34)

4.

respec-

(4.1)

From eqs. (3.3) and (3.4) we obtain

(4.2)

(4.3)

00

(kk'yF°L(k,k'} = In2 \ drrGQ(r,L(L + \^IL L{k,k'-,r), 
o

and from eqs. (3.5) and (3.6)

The integral equations and their solutions

We can now write down the integral equations which correspond to the 
partial wave projections of the equations (2.9), (2.10) and (2.11) 
tivelv. We introduce the abbreviation

^Z-i, L+ ) + G2L + itL-±{k,k ) —
00

(^(kk'Y * J drr[G2(r,(L - 1 )L) + G2(r,(L + 1 )(L + 2))]

00

(jSky Ft(k,k') = 4tt2 + l))MLL(k,k';r).

relation between <«S12> an(* <X12)

and
<L'|G4L12iL> =

where
0, for S = 0,

<W
(J — 1)(2J — 3), for S = 1, L = ./ - 1

- (2J — 1)(2J + 3), for S = 1, L = J,

(J + 2)(2J+ 5), for S = 1, L = J + 1
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Let us then consider the bilinear terms in G

2 [^2’ *$12]+  + ' °2 4" ^4^12 • (4.4)

From (3.28), (3.31) and (3.32) we obtain the expression for the matrix 
element of (4.4), between states of equal L,

G2L(k,k')(S12> + Gl(k,k')^ ■ cr2> + G1(A-,å-')<L12>.

A comparison of (3.24) and (4.5) gives directly
00

- 4Jl2J*rG 3(r,L(L+
0 

and, using eq. (3.34),
00

(kk'^F^Xk.k') - drrG2(r,L(L + t))ML.L(k,k' ;r)
0

00

- f(2L - 1)(2L + 3)4%2J drrG4(r,L(L + l))JfL L(A,A';r). 
0

For the non-diagonal matrix element we obtain, from eqs. (3.25) and (3.29), 

(kk’yF^\k,k') =
oc (4 8)

<lrr[G2(r,(L - V)L) + G2(r,(L + l)(L + 2))]ML_ltL+1(k,k'

fhe integral equations we have obtained, eqs. (4.2), (4.3) and eqs. 
(4.6)-(4.8) are the consequences of the assumption that the function 
F(cr1,cr2,ç,/>) is represented by a function G(cr1,CT2,r,£2) in coordinate space.

The equation corresponding to (4.2) has been investigated in I, where 
it was shown that whenever the equation has a solution for GQ(r,L(L + 1)), 
this solution can be obtained by solving the equation obtained from (4.2) 
by using the constraint, or on-shell condition, k = k'. This means that the 
assumption that a function GÇ<J-L,<J2,r,L2') is the coordinate space representa­
tion of a V(o’1,ct2,9>/’) implies restrictions on the off-shell behaviour of V, 
but no essential restrictions on the on-shell behaviour of V.

The equations we arrive at by using the constraint k = k' are of the type
Qo

/■(.t,p) = jdz/9(z/,i?)J2(æj/), (4.9)

and 0

(4-5)

(4-6)

(4-7)
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/*(æ,p)  = [rfyy(y,z?)Jv_/æy)Jv +/.ry). (4.10)
ö

In the equations (4.9) and (4.10) /'(r,f) is a given function of a real para­
meter .r, and of the complex parameter veD, where the closed domain I) 
is determined in the process of solving the equations. In order to invert (4.9) 
and (4.10) we need the following theorems.

Theorem I: If xf(x,v) is differentiable in (0, oo) am I if (xf(x,v)Y -

domain to the right of the line Re(v) = - |, the equation

/■(r,u) = J dyg(y,v)J2(xy)
o

implies almost everywhere
d =° d xy

g(x,v) = - 2^-^ J —(y/(y,z>))'J duuJv(ii)Yv(u),
X o o

and g(x,v) also belongs to L2(0, oo).
Theorem II: If

00

/(.r,e) = J dyg(y,i))Jv_1(xy)Jv + /ry),
o

then

d f cty
y(.r,zO = -n - — (yf(y,v))

ax J yo y
xy

J dau[Jv_1(u)Yv + 1(u) + Jv+1(u)Yv_1(u)] >,

o

the conditions of validity being identical to those given in Theorem I. Here 
Yv(u) denotes a Bessel function of the second kind. Theorem I was proved 
in I, and Theorem II is proved in exactly the same manner, so we omit 
the proof in this paper.

The equations (4.2), (4.3) and (4.6) are now dealt with in exactly the 
same manner as the equation corresponding to (4.2) which was discussed 
in detail in I, so we shall only consider eqs. (4.7) and (4.8) in the following. 
We now assume that the functions k2F^T\k,k) and k2F^\k,k) for non- 
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negative integral values of L have square integrable derivatives. We then 
obtain, in accordance with theorems I and II,

and

r(G2(r,L(L + 1)) - 2((L + i)2 - 1 )G4(r,L(L + 1)))

dr J I (^FLT\k,k-)y J dm,JL _ 4(U)J_ L_ ,(u), 

0 0

r(G2(r,(L - 1)L) + G2(r,(L + 1)(L + 2)))

Jtr

J duu(JL
0

(411)

(4-12)

(Note that L in (4.11) and (4.12) is a non-negative integer.) In writing down
(4.11) and (4.12) we have anticipated a result which should be a conse­
quence of these equations, namely that the functions G2(r, L(L + 1 )) and 
G±(r,L(L + 1)) actually are entire functions of L(L + 1). Let us consider eq.
(4.11) . The function + x(u)J_ L_ i(u) is, for fixed positive u, an even entire
function of L + | and consequently an entire function of L(L +1). We shall 
then have to prove that (- can be considered as an entire
function of L(L + 1). Let us consider the first term in F(̂ T\k,k), eq. (3.11). 
Using the symmetry property PL( —.r) = ( - 1 )LFL(x) of the Legendre poly­
nominals, we obtain

+ i
(- - U2 J dx(l - x)PL(- ,x-)V2

+ i , _1 . <4.13)
+ 3/? J

where the constraint k = k' is to be used in the expression for V2. It is 
known that the function P£(—x) qua function of the complex parameter 
L, is an even entire function of L + when x has any fixed value such 
that - 1 < x < 1. The first integral in (4.13) defines therefore an entire func­
tion of L(L + 1), provided V2, as a function of x, is continuous in the (open) 
interval (— 1,1), and provided the integral converges uniformly for L within 
any closed domain. The same reasoning can obviously be carried through 
for the second term in (4.13), and also for the other terms included in
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(-1)LF^T)(Å’,Å) whence we conclude that (-1 )LF^T)(À-,À') can he contin­
ued to complex L in such a manner that it becomes an entire function of 
7>(7, + 1). We may note in passing that this is in general not the continua­
tion to use if one wishes to consider the Schrôdinger equation with an an­
gular momentum dependent potential for general complex L, as pointed 
out in I. The integral on the right hand side of (4.11) then also becomes 
an entire function of L(L + 1), provided the requisite conditions of con­
tinuity and uniformity of convergence are satisfied. Let us denote this 
integral by I1(r,L(L + 1)). In exactly the same manner we can prove that 
the integral on the right hand side of (4.12) can be continued to complex 
L in such a manner that it becomes an entire function of L(L + 1). We denote 
this integral by I2(r,L(L + 1)). We shall now have to prove that G2(r, L(L + 1 )) 
and G4(r, 7>(L+ 1)) separately are entire functions of L(L + 1). Let us for 
a moment consider the function G2(r,L(L + 1)) as a function of L-k. The 
equation (4.12) then defines G2(r, L(L + 1 )) through a difference equation 
of the form

,9(~ " 1 ) + I7(" + 1 ) = R"). (4.14)

where /(") is an even entire function. It is known4) that difference equations 
of this kind have in general solutions; moreover, if f(z) is an integral func­
tion of finite order then there exists a particular solution to (4.14) which is 
an integral function of finite order, as proved in Ref. (4). It is readily seen 
that this particular solution is even if and only if /’(") is even. As a result 
of these considerations it is clear that eq. (4.12) defines (apart from arbi­
trary additive solutions to the homogeneous equation) an even entire func­
tion of L + 4 ; that is, G2(r,L(L + 1)) is an entire function of L(L + 1). The 
function G4(r, L(7> + 1)) defined by (4.11) is consequently regular in the 
whole finite L(L + l)-plane, except possibly for L(L + 1) = ? where a pole 
can occur. In order that G4(r,L(L + l)) be regular also for L(L + 1) = f, 
we must have

rG2(r4) = 7/r.f), (4.15)

where, as before, 71(r,7,(7J + 1)) denotes the properly continued integral on 
the right hand side of (4.11). However, on inserting L = — | in eq. (4.12) 
we obtain

2rG2(r,f) = 72(r, - |). (4.16)
It is easily verified that

27^4) = 72(r,-i), (4.17)
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whence it follows that G4(r,L(L + 1 )) is an entire function of L(L + 1). We 
may finally remark that it is not a matter of necessity to obtain the expressions 
for G2(r,L(L + V)) and G4(r,L(L + 1)) separately, since they occur in the 
radial Schrödinger equations in precisely the combinations given in eq.
(4.11) and (4.12). We may also remark that the functions G2(r,L(L + l)) 
and G4(r,L(L + l)) obtained from eqs. (4.11) and (4.12) cannot be more 
singular than o(r_i) near r = 0, since we have only considered the class of 
square integrable functions in the theorems I and II. The conditions which 
ensure the boundedness property and existence of the absolute moments 
of the functions G2 and G4 can easily be obtained, so we omit these con­
siderations.

We may summarize the previous discussion as follows. We have estab­
lished the possibility of constructing a local, angular momentum dependent 
two-nucleon potential starting from the most general momentum space 
representation of such a potential, and derived the necessary formulae for 
carrying out such a programme. In order that a given momentum space 
potential V should correspond exactly to a local, angular momentum de­
pendent potential in coordinate space it is necessary that this V should have 
an ofl'-shell behaviour which is implicitly defined by eqs. (4.2), (4.3) and 
eqs. (4.6)-(4.8) once the corresponding functions Gt(r,L(L + 1)) are ob­
tained by using the on-shell part of these equations. On the energy shell V 
is only restricted by the differentiability and summability conditions which 
ensure that the partial wave integral equations have square integrable solu­
tions. These conditions can probably be relaxed so that the resulting solu­
tions can behave like o(r-3) near r = 0.

5. The scalar boson exchange potential

As an illustration we shall consider the lowest order potential due to 
the exchange of a scalar boson with mass m and coupling constant gs. We 
obtain the following expression for the potential in momentum space:

where
V = Vo + Vri(q *p)-S+  V4ct1 • (q x p)v2 ■ (q > p), (5.1)

(5.2)

(5-3)
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and

EE' wm' q“ + ni2

Here we have used the abbreviations

F=|/M2 + à2, co = F + Af, 

E' = |/a/2 + à'2, co' = F'+Af,

(5.4)

(5.5)

and q is, as before, the momentum transfer. It is readily seen that the po­
tentials (5.2)-(5.4) cannot, as such, be represented by local, angular momen­
tum dependent potentials in coordinate space. However, since the lowest 
order potential in principle is fixed only on the energy shell, we may use 
the on-shell part of the potential directly to obtain the local, angular mo­
mentum dependent coordinate space potential. We shall then have to eval­
uate the functions F£o>,. . . , F£T) according to the formulae given in section
3. Let us introduce the notation

(5.6)

40)(A-)
4ME

(5-8)
dX)(*)  =

flSP\k) =

(5-9)
r£sp)(jt) =

I

We then obtain, from eqs. (5.2)-5.4),

Eo)\ 4Mœ)\ 

g2k*
2MEm2 (Ôlo ~ ^L1)’

\ Å'2

g?nï2k / m2 \
—----- o 1 +-- jQr(’)12MEco2\ 4k2) U 7

<72A’3
--------------- 9 (^lo + l ôL1), 12MEco2K lo 3 L1J
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/T(O = - i<z> + - ä-Q/.C-)).
6MEcod

W) =
.gs2*3

3MEco2

(5.10)

(5.11)

Here ()L(;) is the Legendre function, and

(5.12)

We may remark that the formulae (5.8), (5.10) and (5.11) are valid for 
L > 1 only, since for L = 0 we have to replace the function Ql+i(z) — 
Ql-i(z) bv Qi(z) ~ Qo(z) ln accordance with the formulae given in sec­
tion 3.

Let us then discuss the eq. (5.7). The first term in (5.7) corresponds in 
the “static” or “adiabatic” limit to the ordinary Yukawa potential. The 
remainder r^(k) in (5.7) represents a short range interaction which operates 
only in the states with L = 0 or L = 1. Before proceeding further we may 
remark that it is perhaps unreasonable to pay loo much attention to the 
short range terms /'^(/f), since in the states with L = 0 and L = 1 there are 
certainly unknown short range interactions which are probably more im­
portant than the simple single particle exchange forces of the type con­
sidered here. We shall therefore for a moment omit the short range terms 
rjy(&) from the discussion and consider only the functions /‘^(/t). We then 
need the asymptotic expansion5) of QL(z) for large values of k,

Ql(z) (5.13)

Here the function ^(r) is the logarithmic derivative of the gamma function 
and y = — y(l).

Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 14. 2
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It is now readily seen that the function kf^(k) has a derivative which 
is square integrable, but also absolutely integrable. We can then interchange 
the order of différentiation and integration in the inversion formula (Theo­
rem I) given in section 4, and obtain, for integral values of L,

G0(r,L(L + 1)) - - bj(5-14) 

0
(A > 1)

The integral (5.14) cannot be evaluated in terms of elementary functions, 
but it can be transformed, by using contour integration, into a form which 
reveals its relationship to the ordinary Yukawa potential. We have given 
an example of this in I, and shall not consider the matter further in this 
paper. The function has also an absolutely summable derivative,
so that we obtain

1 x
G^r.UL + 1 )) - - - J dk(kfd\k))'kJL + ;(kr) Yl + ,(*<■)■  (5.15)

0
(L > 1)

Similarly,
1 x

G3(r,L(L + l)) - --j dk(kf[sp>(k)yUL+i(kr)YL + i{kr). (5.16) 
0

(Å > 1)

We may remark that the functions Go, Gr and G3 defined by the eqs. (5.14)- 
(5.16) are less singular than r~ 1 near r = 0.

For the remaining functions, fi?T\k') and the situation is dif­
ferent. We observe that these functions tend to definite (non-zero) limits
when k tends to infinity:

lim /’<er)
fc-> 00

y(T - 1) - yi(L+l)
2L + 1 (5.17)

lim fi\k) = - (2yi(T) - v?(L + 1) - y(L - 1)).
k -> » bar

(5.18)

The functions kf^T\k) and kf^(k) do therefore not have square integrable 
derivatives, and the inversion theorems are not immediately applicable in 
these cases. This difficulty can readily be overcome. Suppose now that the 
principal part near r = 0 of the functions
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G2(r,L(L + 1» - |(2L - 1)(2L + 3)G4(r,L(L + 1)) 
and

G2(r,(L-l)L) + G2(r,(L + l)(L + 2))
is of the form

(5-19) 

respectively, where U < Â < 2 and g22, r/24 are /^-dependent constants. Re­
calling the formula6)

00

jdrr_ÂJ/t(A’r).A.(ÀT) = C^./z.r)^“1, (5.20)
o

(Re(/z + v + 1) > Re(Â) > 0)
where

C(Â,/z,v) = 

______________ 2~Âr(Â)r(^ + ir - y + P______________ (5.21)
+ Ig — + %)’

we observe, from eqs. (4.7) and (4.8), that À in (5.19) must equal unity, 
and obtain the relations

4%y24(L)C(l,L + i,L + l) -

- lrfgm(L)C(l,L - l.L + ?) - /■<’’>(=«,),

where /£cr)(o°), /z,T)(°°) denote the limits (5.17) and (5.18), respectively. 
We then obtain (for L > 1)

G2(r.L(L + 1)) - 2((L + -J)2 - l)G4(r,£(L + 1)) -
~ J - rt<!T,(“)))'Wl+ }(ir)yi+ }(ir),

0
and

G2(r,(L - 1)7.) + G2(r,£ + 1)(L + 2)) - 

+4 J dk(k(ff\k) - f^m'k 

0

- x(^) + »(*')  + JL + f(^) yL - •

As we mentioned before, it is not necessary to obtain the expressions for 
G2 and G4 separately, since these functions occur in the radial Schrôdinger 
equations in precisely the combinations given in (5.24) and (5.25).

2*
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Let us now return to the short range terms rp(A-). It is readily seen that 
these terms tend to non-zero limits r^X00) when k tends to infinity. By 
using the same arguments as above, we conclude that these terms in co­
ordinate space correspond to potentials which behave like O(r2) near 
r = 0.

6. Concluding remarks

In the foregoing sections we have considered the more or less formal
problem of obtaining a local, angular momentum dependent potential from 
a given potential in the momentum representation. The formalism outlined 
here might be considered complicated, but this lies in the nature of the

We may summarize the discussion as follows. The scalar boson exchange 
potential (5.1) can be represented by a local, angular momentum dependent 
potential G in coordinate space, which contains a central .., spin-orbit, 
spin-spin .., quadratic spin orbit .. and tensor force potential. The three 
first mentioned potentials behave like o(r_1) near r = (I, whereas the quad­
ratic spin orbit .. and tensor force potentials behave like O(r~2) near 
r = 0. In addition, there appear short range terms which operate only in 
the states with L = 0 and L = 1, respectively, and which behave like 
O(r-2) near r = 0.

Let us now compare this result to the one which is obtained by using 
expansions with respect to p2/M2. In the adiabatic limit6 7) the spin-bilinear 
terms disappear completely. The central potential becomes the ordinary 

, e~mr . U\ ukawa potential 1 = ----- , and the spin-orbit lorce becomes----- T(mr),
r r dr

which behaves like O(r-3) near r = 0. In the next approximation, keeping 
terms of the order p2/M2, one obtains8) a quadratically momentum depen­
dent central potential, which in coordinate space has the form Y(mr) -

y(mr), where p is the differential operator The resulting 

“effective” central potential is therefore a linearly energy dependent func­
tion which behaves like O(r-3) near r = 0. The spin orbit potential is in 
this approximation the same as in the adiabatic limit. Also, the spin-bilinear 
terms are absent in this approximation. We may therefore conclude that 
the approximations of the above mentioned type give a both qualitatively 
and quantitatively misleading picture of the scalar boson exchange potential. 
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problem and cannot be avoided. We may note that if one wishes to solve 
the two-nucleon scattering problem with a non-local potential in the mo­
mentum representation by using the Lippmann-Schwinger equation, then 
the matrix elements evaluated in section 3 are necessary ingredients in a 
calculation of this kind. We have shown that a potential V in the momentum 
representation becomes local and angular momentum dependent in co­
ordinate space if V has a particular off-shell behaviour, which is implicitly 
defined by the partial wave integral equations considered in this paper. 
We mentioned in the introduction that in a perturbative definition of a 
potential it is always possible to determine the off-shell behaviour so that 
the coordinate space potential becomes local and angular momentum 
dependent. We can in fact add an arbitrary term, vanishing on the energy 
shell, to the lowest order potential, provided this is compensated by adding 
the proper corrections to the higher order potentials. This procedure can 
then be repeated for the potential of next order, and so on.

It is thus possible, within a perturbative definition of the potential, to 
get a potential with any (reasonable) off-shell behaviour, and, in particular, 
the off-shell behaviour which yields a local, angular momentum dependent 
potential in coordinate space.

Among potentials of this kind we may mention the various one-boson­
exchange potentials, which have been used extensively in numerical calcula­
tions in nucleon-nucleon (N-N) scattering. We shall not enter upon a discus­
sion of the domain of applicability of such potentials in this paper; we 
merely recognize the fact that the vast majority of potentials which have 
been considered in N-N scattering are based more or less directly on the 
use of perturbation theory expansions for the S-matrix from field theory. 
Besides the approximations of a “physical” nature involved in calculations 
with such potentials, one has used approximations involving expansions 
with respect to the inverse of the nucleon mass, in order to obtain local or 
“almost local” potentials.

In I we have investigated the validity of such approximations by eval­
uating the phase shifts for the case of scalar particles interacting through a 
single particle exchange potential. It was shown that the “adiabatic” ap­
proximation can lead to quite inaccurate results for this case. The example 
considered in section 5 of this paper shows clearly that the approximation 
involving an expansion in p2/M2 is entirely misleading.

Il is of course very natural to make approximations which lead to local 
potentials, in order to obtain manageable equations. As we have demon­
strated, this can be achieved, whithout using />2/M2-expansions, by taking 
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advantage of the ambiguities inherent in any S-matrix definition of the 
potential, and this leads to the concept of a local, angular momentum 
dependent potential.
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